روش های عددی برای حل معادلات دیفرانسیل تصادفی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان
- author سکینه کریم کشته
- adviser علیرضا سهیلی منصور آقابابایی
- Number of pages: First 15 pages
- publication year 1390
abstract
در این پایان نامه روش های رانگ-کوتای افراز شده برای حل معادلات دیفرانسیل تصادفی مرتبه دوم معرفی میگردد اما چون دقت این روش ها پایین بود در ادامه روش های رانگ-کوتای افراز شده مرتبه بالاتر ارائه گردید.در انتها تابع چگالی ایستا برای معادلات دیفرانسیل تصادفی غیر خطی مرتبه دوم ارائه شد.
similar resources
مطالعه روش عددی میلشتین برای حل معادلات دیفرانسیل تصادفی تأخیری
روش میلشتین ساده ترین روش عددی برای حل معادلات دیفرانسیل تصادفی با مرتبه همگرایی قوی است. این روش برای معادلات دیفرانسیل تصادفی تأخیری توسعه داده می شود که البته بررسی همگرایی آن به خاطر انتگرال های موجود در عبارات باقیمانده پیچیده است. در این پایان نامه روش میلشتین و اولین مرتبه نرخ قوی همگرایی با روش های مقدماتی ساده بیان شده است. برای بیان این روش از بسط تیلور که مشتق های به کار رفته در آن...
15 صفحه اولپیادهسازی سختافزاری حل عددی معادلات دیفرانسیل روی FPGA
حل عددی معادلات دیفرانسیل با استفاده از بسترهای CPU و GPU مبتنی بر پیادهسازی نرمافزاری است. در سالهای اخیر، راهکار جدیدی مبتنی بر پیادهسازی سختافزاری معادلات با استفاده از بستر FPGA، بهدلیل افزایش سرعت حل و کاهش توان مصرفی، مورد توجه جدی قرار گرفته است. در این پژوهش با حل چند مسئلهی نوعی، شامل سیستم جرم و فنر و معادلهی موج، روش پیادهسازی سختافزاری برای حل معادلات دیفرانسیل بر ر...
full textحل عددی معادلات دیفرانسیل تصادفی
در این رساله ابتدا مقدماتی از معادلات دیفرانسیل تصادفی و حسابان تصادفی را خواهیم دید و سپس در مورد نتایج اساسی استخراج شده بحث خواهیم کرد.اساسی ترین نتایج این رساله عبارتند از :تعمیم روشهای رانگ - کوتای صریح برای حل عددی معادلات دیفرانسیل تصادفی که در سال 1996 توسط k.burrage و p.m.burrage استخراج شده بودند در واقع در این رساله با استفاده از نظریه درختان ریشه دار و تعمیم آنها به حالت تصا...
15 صفحه اولحل عددی معادلات دیفرانسیل تصادفی
حل عددی مسائل دیفرانسیل معمولی یا جزئی خطی که در آن قسمتی از شرایط اولیه یا کرانه ای یا خود معادله تصادفی باشد از دیرباز مورد توجه پژوهشگران بوده است. تصادفی بودن بدین مفهوم است که وجود برخی اختلالات سبب تبدیل معادله از حالت معین شده ریاضی به تصادفی با ابعاد مختلف شود. مبنای حل این گونه معادلات، تکیه بر اصول خطی سازی و گسسته سازی مسأله است. در اکثر موارد قسمت تصادفی دارای ویژگی حرکت براونی اس...
15 صفحه اولموجکهای چبیشف برای حل عددی معادلات انتگرال تصادفی ولترا با روش کمترین مربعات
این مقاله با استفاده از موجک چبیشف و روش کمترین مربعات، یک روش تقریبی برای حل معادله انتگرال ایتو-ولتراارائه می دهد. معادله انتگرال ایتو-ولترا با روش کمترین مربعات به وسیله موجک چبیشف به یک دستگاه معادلات خطیتبدیل می شود که آنالیز خطای روش پیشنهادی، ارائه شده و سرعت همگرایی نیز اثبات شده است. همچنین مثال هایعددی میزان دقت و کارآمدی این روش را نسبت به روش ماتریس عملیاتی تصادفی نشان می دهند.
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023